Cooperative CO2 Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol

نویسندگان

  • Rachel Steinhardt
  • Stanley C. Hiew
  • Hemakesh Mohapatra
  • Du Nguyen
  • Zachary Oh
  • Richard Truong
  • Aaron Esser-Kahn
چکیده

Designing new liquids for CO2 absorption is a challenge in CO2 removal. Here, achieving low regeneration energies while keeping high selectivity and large capacity are current challenges. Recent cooperative metal-organic frameworks have shown the potential to address many of these challenges. However, many absorbent systems and designs rely on liquid capture agents. We present herein a liquid absorption system which exhibits cooperative CO2 absorption isotherms. Upon introduction, CO2 uptake is initially suppressed, followed by an abrupt increase in absorption. The liquid consists of a bifunctional guanidine and bifunctional alcohol, which, when dissolved in bis(2-methoxyethyl) ether, forms a secondary viscous phase within seconds in response to increases in CO2. The precipitation of this second viscous phase drives CO2 absorption from the gas phase. The isotherm of the bifunctional system differs starkly from the analogous monofunctional system, which exhibits limited CO2 uptake across the same pressure range. In our system, CO2 absorption is strongly solvent dependent. In DMSO, both systems exhibit hyperbolic isotherms and no precipitation occurs. Subsequent 1H NMR experiments confirmed the formation of distinct alkylcarbonate species having either one or two molecules of CO2 bound. The solvent and structure relationships derived from these results can be used to tailor new liquid absorption systems to the conditions of a given CO2 separation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconventional Bifunctional Lewis-Brønsted Acid Activation Mode in Bicyclic Guanidine-Catalyzed Conjugate Addition Reactions.

DFT calculations have demonstrated that the unconventional bifunctional Brønsted-Lewis acid activation mode is generally applicable to a range of nucleophilic conjugate additions catalyzed by bicyclic guanidine catalysts. It competes readily with the conventional bifunctional Brønsted acid mode of activation. The optimal pro-nucleophiles for this unconventional bifunctional activation are acidi...

متن کامل

Unconventional Bifunctional Lewis-Brønsted Acid Activation Mode in Bicyclic Guanidine-Catalyzed Conjugate

DFT calculations have demonstrated that the unconventional bifunctional Brønsted-Lewis acid activation mode is generally applicable to a range of nucleophilic conjugate additions catalyzed by bicyclic guanidine catalysts. It competes readily with the conventional bifunctional Brønsted acid mode of activation. The optimal pro-nucleophiles for this unconventional bifunctional activation are acidi...

متن کامل

Asymmetric α-amination of β-keto esters using a guanidine–bisurea bifunctional organocatalyst

An asymmetric α-amination of β-keto esters with azodicarboxylate in the presence of a guanidine-bisurea bifunctional organocatalyst was investigated. The α-amination products were obtained in up to 99% yield with up to 94% ee.

متن کامل

Development of Guanidine-Bisurea Bifunctional Organocatalysts with a Chiral Pyrrolidine Moiety and Application to α-Hydroxylation of Tetralone-Derived β-Keto Esters.

Novel guanidine-bisurea bifunctional organocatalysts 5 bearing a chiral pyrrolidine moiety on guanidine were designed with the guidance of DFT calculations. The resulting organocatalysts 5 were examined for α-hydroxylation of tetralone-derived β-keto esters, and good selectivity was obtained with 5j bearing a methoxymethyl ether-containing chiral pyrrolidine moiety.

متن کامل

Catalytic asymmetric 1,4-additions of beta-keto esters to nitroalkenes promoted by a bifunctional homobimetallic Co2-Schiff base complex.

Catalytic asymmetric 1,4-addition of beta-keto esters to nitroalkenes is described. 2.5 mol % of a homobimetallic Lewis acid/Brønsted base bifunctional Co2-Schiff base complex smoothly promoted the reaction in excellent yield (up to 99%), diastereoselectivity, and enantioselectivity (up to >30:1 dr and 98% ee). Catalyst loading was successfully reduced to 0.1 mol %. Mechanistic studies suggeste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017